
QueRIE: System for Personalized Query
Recommendation
Minakshi N. Patil1, Prof. A.K. Gulve2

1PG student (CSE), 2Associate Professor (MCA)
1Department of computer science and Engineering, 2MCA Department

1,2Government College of Engineering
Aurangabad, India.

Abstract: Personalized query recommendation for database is
a major task in information mining. Query recommendation
is basically meant for the users who are lacking in SQL
expertise and face many problems in handling database
schema, joins, primary key foreign key relations, views,
clusters etc. We developed a personalized query
recommendation system to streamline task for these users.
QueRIE continuously monitor task performed by active user
and finds a matching pattern with previous user from query
log and identifies similar information needs.
Recorded query fragments are used to match similar query
fragments of recorded sessions of previous users which in turn
provide potentially interesting queries for active user.
Proposed system generates recommendation for real time
computations on huge database.

Keywords: SQL, Tuple based, Fragment based, Interactive
exploration, QueRIE, personalize, Query Log, Query
Recommendation, Relational Database.

I. INTRODUCTION

Database management system (DBMS) provides critical
approach to access, analyze and manage huge amount of
data. Like warehouses which supports business
intelligence, data analysis, business exploration, scientific
data exploration etc. Despite availability of query
processing applications large database new users often face
difficulties in understanding database schema, relational
database and formulation of queries.

For instance the data warehouse platform used in social
networking sites like Facebook, Twitter, linked in, result of
heavy usage frontrunners to lot of tables generated in the
pool of warehouse and this in turn generate the need of data
discovery application, especially for new user [1]. Even for
expert users, who are able to handle complex queries, the
task of knowledge discovery remain a big challenge as
users may unable to understand database schema, relation
between databases or may not have required expertise to
formulate specific queries. Moreover due to continuous
increase in the size of data, exploration of databases is
infeasible. The goal of a QueRIE system is to assist users
with interactive exploration of a large database [2].

The proposed system generates recommended queries as
per required information by active user instead of
composing new one, although this recommendation has few
technical challenges. QueRIE is inspired by recommender

system: If two users A and B posed the same query, later if
user A is interested in user B’s query and vice versa to
explore their databases, collaborative filtering is used to
propose this idea, a well known technique used in
recommender system [3].

Allocation of this approach into the database context causes
several challenges. First, SQL is a declarative programming
language and therefore syntactically different query may
result same information. We cannot simply compare SQL
queries hence we have to resolve difficulties in query-
equivalence problem. The second challenge is, regarding
knowing which queries are important in the computation of
user similarity. Finally recommended queries need to be
updated by the user as per their requirement. Closed loop
approach is employed to address these challenges [4].

II. THE QUERIE FRAMEWORK

Queries of active user are sent to the DBMS and the
recommendation engine as shown in fig 1. DBMS
processes each query and returns required information. At
the same time each session is stored in a query log. The
recommendation engine combines the active user
requirements and information gathered from database
interaction of previous users as per the recorded sessions in
query log and generate query recommendations for the
active user by finding maximum matching pattern using
Re-ranking algorithm [5].

The QueRIE framework workflow is as shown in figure 1.
The queries of active user are forwarded to the DBMS and
recommendation engine too. The DBMS processes each
query and returns required information. At the same time
each query is transferred to query log [6].

The Recommendation Engine combines the active user
input with the information stored earlier in the database by
previous user, since recorded in the query log, and provide
set of recommendations to the active user. The goal of this
exploration is to find not only gripping information but also
verify the particular hypothesis. The queries are generated
based on this goal and reached the active user information
needs. As a result, queries reported by the user during one
visit to the database are verified; the user developed the
new query in the sequence after checking the result of
previous queries [7].

Minakshi N. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2390-2393

www.ijcsit.com 2390

Fig 1: QueRIE framework

Three methodologies are used to generate query
recommendations:

a) Dictionary Mapping
b) Tuple based query recommendation
c) Fragment History

 Let Si represent session summary for user i. i=0 represent
active user for whom recommendation will generate.
i=1….n represent past user of the system. To generate
recommendation for current user S0, the query framework
first compute predicted summary Spred. This summary
captures the interest of S0, then Spred used as ‘seed’ for the
generation of recommendations [8]. Predicate summary can
be define as

Spred=f(α ,S0, S1, S2 …….Sn)
Where f is a function that combines all information of the
active user S0 and previous users S1 …..Sn. The mixing
factor α is very important, if α=1, Spred takes into account
only the queries in S0 where as if α=0, Spred queries of
previous users effect on the recommendation.
Using Spred , the framework generate queries with highest
prediction that covers the subset of the database. It is
important to recommend meaningful and intuitive queries
which should have non empty result sets [9].

III. IMPLEMENTATION
A. Mathematical Model:
Let, I is a set of input i.e. Query which is submitted. F is the
set of functions used for the implementation. O is the
output.

S= (I, F, O)
I: Input Query
F: Set of Functions
O: Set of Output
F=F1, F2, F3, F4, F5, F6, F7, F8.

F1: Enter keyword based on SQL programming.
F2: Choose Log Filter.
F3: Choose Schema Filter.
F4: Execute the query.
F5: Maintaining of query log.
F6: Extraction of session summary.
F7: Generation of target tuples.
F8: Re-ranking based on clarity score.

F1: Enter keyword based on SQL programming.
X: Enter the particular keyword based on SQL
programming to get the recommendations which is
desirable, a list of recommended queries will be obtained
from which select the one which is needed.
F(X): Based on the previous user log the recommendations
will be displayed.

F2: Choose the Log Filter.
X: Log Filter can be selected based on either Individual
Log or Collaborative Log.
F(X): Individual log gives recommendation based on
current users querying behaviour, while that of the
Collaborative Log gives recommendations based on current
as well as past user querying behaviour.

Fig2. Mathematical Model

F1 F2 F3 F4 F5 F6 F7 F8 I O

Re-Ranking based on
Agglomerative

Algorithm

Minakshi N. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2390-2393

www.ijcsit.com 2391

F3: Choose the Schema Filter.
X: Schema Filter can be selected based on either Tuple
based or Fragment based approach.
F(X): The tuple-based approach captures the users querying
behavior at a very fine level of detail the individual
witnesses to the user queries. While that in the Fragment-
based the coordinates of the session summaries correspond
to fragments of queries instead of witnesses.

F4: Execute the Query.
X: Query is executed.
F(X): Query is executed and result is displayed to the user.

F5: Maintaining the Query Log.
X: Query Log is maintained.
F(X): Based on the users querying behaviour the query log
is maintained.

F6: Extraction of session summary.
X: Session summary is extracted.
F(X): Any Current or Active user whose query matches
with the previous user query then that summary can be
extracted by the current user.

F7: Generation of Target tuples.
X: Based on session summary generate target tuple.
F(X): Providing only the necessary tuple to the active user.

F8: Re-ranking based on Clarity score.
X: Re-ranking of query is done based on clarity score.
F(X): Target tuples are re-ranked and displayed to the user.

B. Agglomerative Clustering Algorithm
The algorithm forms clusters in a bottom up manner, as
given below:
I. Initially, put each article in its own cluster.
II. Among all current clusters, pick the two clusters which
are at smallest distance.
III. Replace these two clusters with a new cluster.
IV. Repeat the above two steps until there is only one
cluster remain in the pool. Thus agglomerative clustering
algorithm will result in a binary cluster tree.

Fig3. Workflow of Agglomerative algorithm

C. Re-ranking:
The ranked retrieval mode has rapidly become the effective
way to search exact matching pattern. There are two critical
requirements for re-ranking. First, the recommendations
precisely follow the specified ranking function, i.e., there is
no loss of accuracy and the recommendation service is
transparent to the active user as far as query concerned.
Second, the query re- ranking service must minimize the
number of new queries to be created. This requirement is
crucial for two reasons: First is to ensure a fast response
time to the user query. Second is to reduce the burden on
the active user in order to get query recommendations by
previous users [10].

IV. RESULT ANALYSIS
Evaluation of proposed system is done by using the
MySQL server. Simple SQL queries as well as nested
queries (sub queries) supported by proposed system.
Evaluation is done on the following SQL query.
Select * from tblAccounts

a b c d e

ab cd

cde

abcde

Minakshi N. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2390-2393

www.ijcsit.com 2392

This input is given to the database query interface. It will
generate information needed by active user as well as
recommendations by using three methods viz, Dictionary
Mapping, Tuple Based Fragmentation and Fragment
History. The goal of proposed system is to generate
recommendations rapidly with maximum matching
patterns. To achieve this re-ranking based on
agglomerative technique is used, as it is an efficient way to
retrieve exact matching patterns rapidly. At any time active
user able to: (a) Formulate new query, (b) Select
recommended query and submit it as it is or edit it before
submitting it to the database. The interface allows the user
to browse the schema of database, analyze and re-submit
queries. A snapshot of the query model is as shown in
figure 4.We can conclude that fragment takes less
computation time as compare to other two systems.
Fragment based approach grows in scalable system.

V. CONCLUSION

In this paper we design QueRIE framework which is used
to generate SQL query recommendations for the current
user or active user. Fragment based approach is efficient
among all three but it representing coarser level of details.
Most important, fragment to fragment information can be
stored offline and stored for fast retrieval when
recommendation needs to be generate. The experimental
result showed that non expert users, who are lack in SQL
expertise they able to access required information through
recommendation instead, basic knowledge of query
language is mandatory for the user.
There are many interesting zones we would like to explore
in the future. We would like to measure impact of
relaxation process over the recommendations. Exploring
sequence based approach is another area of interest for the
future work. To find similarities in query sessions pure
sequence information is not sufficient. Instead, we might
have to work on other strategies for e.g. selection of
predicate is more efficient in advance query, in order to
properly detect matching pattern. I also plan to focus on
relational databases which supports form based interface.
Finally, as my aim to develop more generic and scalable
system, I am currently working on alternative technique for
generating recommendations.

ACKNOWLEDGEMENT:
I wish to express my sincere gratitude to the Head Of
Department Prof. V.P. Kshirsagar for providing me an
opportunity for presenting a project on the topic ”QueRIE
:System for Personalized Query Recommendation”. I
sincerely thank my project guide Prof. A. K. Gulve for his
guidance and encouragement in the partial stage
completion of my project work. I also wish to express my
gratitude to the officials and other staff members who
rendered their help during the period of my project work.
Last but not least I wish to avail myself of this opportunity,
to express a sense of gratitude and love to my friends and
my parents for their manual support, strength, and help.

REFERENCES
[1] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M. Eirinaki, and N.

Polyzotis, QueRIE: A recommender system supporting inter- active
database exploration, in Proc. IEEE ICDM, Sydney, NSW,
Australia, 2010.

[2] ”database, n”. OED Online. Oxford University Press. June 2013.
Retrieved July 12, 2013.

[3] G. Linden, B. Smith, and J. York, Amazon.com recommendations:
Item-to-item collaborative filtering, IEEE Internet Comput., vol. 7,
no. 1, pp. 7680, Jan./Feb. 2003.

[4] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin
Shaikh. JULY 2014. ”QueRIE: Collaborative Database Exploration”.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, VOL. 26, NO. 7.

[5] Proctor, Seth (2013). ”Exploring the Architecture of the NuoDB
Database, Part 1”. Retrieved 2013-07-12.

 [6] E. Cohen, “Size-estimation framework with applications to tran-
sitive closure and reachability,” J. Comput. Syst. Sci., vol. 55, no. 3,
pp. 441–453, 1997.

[7] J. Akbarnejad et al., “SQL QueRIE recommendations,” PVLDB, vol.
3, no. 2, pp. 1597–1600, 2010.

[8] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica, “Relaxing join and
selection queries,” in Proc. 33nd Int. Conf. VLDB, Seoul, Korea,
2006, pp. 199–210.

[9] B. M. X. Jin and Y. Zhou, “Task-oriented web user modeling for
recommendation,” in Proc. User Modeling, Edinburgh, U.K., 2005.

[10] Xiaogang Wang, Shi Qiu, Ke Liu, and Xiaoou Tang, “Web Image
Re-ranking Using Query-Specific Semantic Signatures”2013

Minakshi N. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2390-2393

www.ijcsit.com 2393

